
AE 6042 A/Q Computational Fluid Dynamics
Final Project (Due Thursday, May 2, 2024)

Due Date Applies to Both Section A and Q Students

The objective for the final project is to develop a two-dimensional (2-D) finite-volume Euler solver
using your choice of methods, e.g., the Steger-Warming Flux Vector Splitting (FVS) scheme [1], Roe Flux
Difference Splitting (FDS) scheme [2], or the Advection Upstream Splitting Method (AUSM+-up) FVS
scheme [3]. Ideally, the solver should be written using a high-order, Total Variation Diminishing (TVD),
Monotone Upstream Scheme for Conservation Laws (MUSCL) formulation. However, the solver should be
developed in two stages. First, establish a working implementation of the Euler equations starting with a
first-order spatial formulation. Then as time permits add the higher-order TVD formulation. The goal is to
compute supersonic flow over the diamond shaped airfoil that was specified in Assignment 4 (see Fig. 1).

1. Computational Domain: The computational domain is shown in Fig. 1. The leading edge of the airfoil
is placed at (x, y) = (0, 0) and trailing edge at (x, y) = (1, 0). The airfoil is symmetric in both coordinate
directions. Its maximum half-thickness is located at x = 0.5 and is defined by two planar surfaces oriented
at an angle of 10-degrees with respect to the leading and trailing edges (i.e. yhalf-thickness ≈ 0.0882). The
symmetry lines at y = 0, upstream of the leading edge of the airfoil, and downstream of the trailing edge,
are slipstreams that should be treated the same as adiabatic slip-wall conditions. For convenience, the
upper wall boundary should also be treated using an adiabatic slip-wall condition. Likewise, adiabatic
slip-wall conditions should be applied to the airfoil surface.

Figure 1. Computational domain and example grid for calculation of a supersonic flow over the top
half of a diamond shaped airfoil in a channel. Assume that the spatial units are in meters.
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2. Grids: Three primary grids are provided to use for this assignment, as shown in Fig. 2. Recall from
Assignment 4 that grid points are described by Cartesian (x, y) coordinates at respective (i, j) locations,
where the i index follows the ξ direction and the j index follows the η direction. Respective grids have
integer dimensions of nx × ny over the ranges 1 ≤ i ≤ nx and 1 ≤ j ≤ ny. Grid (a) has dimensions of
33 × 25 with uniformly spaced cells and should be used for developing and debugging the initial Euler
solver. Grid (b) has dimensions of 65×49 with uniformly spaced cells and should be used to calculate the
“production” level inviscid Euler cases specified below. Grid (c) is provided as an example for those who
might be interested in attempting to code the viscous terms (i.e., to develop a Navier-Stokes solver).1 It
has dimensions of 65 × 65 with stretching applied to resolve the boundary layer. For this case, adiabatic
no-slip wall conditions should be applied. Coordinate data for each of these grids are provided in the
ASCII formatted files “g33x25u.dat,” “g65x49u.dat,” and “g65x65s.dat,” respectively. The code that was
developed to read and process the sample grid given in Assignment 4 to construct the “halo” (or “ghost”)
cells and calculate the projected cell face areas and cell volumes should be used as a starting point.

Figure 2. Primary grid topologies to be used for Euler and Navier-Stokes calculations with dimensions of (a) 33 × 25 uniformly
spaced cells, (b) 65 × 49 uniformly spaced cells, and (c) 65 × 65 cells with stretching applied along the lower boundary to resolve
the boundary layer. Coordinate data for each of these grids is provided in the ASCII formatted files “g33x25u.dat,” “g65x49u.dat,”
and “g65x65s.dat,” respectively. Assume that the spatial units are in meters.

3. Numerical Scheme: The 2-D, time-dependent, Euler equations should be solved using an explicit finite-
volume discretization. Respective cell volumes and projected cell face areas must be evaluated for each
cell in the computational domain. The equations will be marched forward in time until a steady-state
solution is reached. To achieve this, first-order backward differencing in time should be combined with
either the FVS or FDS schemes [1–3]. MUSCL interpolation/extrapolation should be used to approxi-
mate the left and right state vectors of Q = [ρ, ρu, ρv, ρet]T at respective cell faces.

4. Thermodynamic and Transport Properties: Assume that the working fluid is air at conditions where
it behaves as a calorically perfect gas with an ideal gas constant of R = 287.0 J/(kg·K), constant pressure
specific heat of Cp = 1005 J/(kg·K), and ratio of specific heats of γ = 1.400. For those interested in
attempting to code the viscous terms, use Sutherland’s formulas to calculate the viscosity and thermal
conductivity (see Section 5.1.4 on page 333 in Anderson, Tannehill and Pletcher, 4th Edition).

5. Initial and Boundary Conditions: Assume that the static pressure, temperature, and Mach number
at the inlet are 101325 Pa, 300.0 K, and M = 2.000, respectively, with a flow direction parallel to the
Cartesian x-axis. This translates to an axial convective velocity of 694.4 m/s since the speed of sound for
the conditions given is c = 347.2 m/s. Using these conditions, the state vector Q must be evaluated in all
of the inlet boundary halos. Also use these values as the initial condition for all of the interior cells at the
beginning of the calculation. This can be accomplished using the thermodynamic properties given above

1Note that this is optional and NOT required as a project deliverable.
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and recalling that

ρet =
p
γ − 1

+
1
2
ρ(u2 + v2).

For the conditions given, the flow will be supersonic at both the inlet and exit planes. Thus, Qq+1
0, j = Qq

0, j

is held constant for all q along the inlet plane, and Qq+1
nx, j = Qq

nx−1, j (i.e., first-order extrapolation) is
applied along the exit plane after each iteration in time. Inviscid adiabatic slip-wall conditions should be
applied along the upper wall and lower flow boundary on the intervals −0.5 ≤ x ≤ 0.0 and 1.0 ≤ x ≤ 1.5.
Adiabatic slip-wall conditions should be imposed along the surface of the airfoil over the interval 0.0 ≤
x ≤ 1.0 for Euler calculations using Grids (a) and (b).2

6. Convergence Criteria: Time marching methods for the solution of steady-state problems are a common
strategy used in CFD. The governing system is cast in the form

Qq+1
i, j −Qq

i, j = −∆τRHSq
i, j,

where the right-hand-side spatial operator is referred to as the residual since it approaches zero as the
solution approaches a steady-state condition. This technique is known as “local-time-stepping,” and the
time index q is typically used to denote iterations in “pseudo-time.” To drive the system to the steady-
state solution, we are not concerned with time accuracy, but instead want to maximize the rate at which
a given scheme converges to the steady-state solution. Thus, instead of applying a globally fixed time-
step, which is required for a time-accurate calculation and produces variable CFL’s and VNN’s in the
domain, these quantities can be fixed to their respective upper stability limits to maximize the local rate
of convergence. The rate of convergence is typically characterized by the L2-Norm and/or L∞-Norm,
where the L2-Norm is defined as

||Qq+1
i, j −Qq

i, j||2 =

√√√√nx−1∑
i=1

ny−1∑
j=1

∣∣∣∣Qq+1
i, j −Qq

i, j

∣∣∣∣2,

and the L∞-Norm is
||Qq+1

i, j −Qq
i, j||∞ = max

i, j

{∣∣∣∣Qq+1
i, j −Qq

i, j

∣∣∣∣} ,
for i = 1, 2, . . . , nx − 1, and j = 1, 2, . . . , ny − 1. Note that these quantities must be normalized by the
relative magnitudes of the components of Q. For this problem, normalization can be accomplished using
the reference inflow pressure, temperature, and magnitude of velocity to define Qref. The normalized
quantities are plotted using log10 values of the L2-Norm and L∞-Norm versus the number of iterations.
Note that convergence to machine accuracy is 10−16 for codes compiled in double precision and 10−8 for
codes compiled in single precision. For verification purposes, convergence to machine accuracy should
always be demonstrated. In practice, reducing the slowest converging residuals by approximately 3 to 4
orders of magnitude is typically sufficient.

7. Solution Verification: The Euler solutions obtained with your solver should be verified by performing
comparisons with the oblique shock solution given in Table 1. Oblique shock waves occur when a
supersonic flow is forced to change direction (e.g., when it encounters the wedge). Thus, the given
solution applies across the first oblique shock that forms at the leading edge of the airfoil.

2No-slip adiabatic or isothermal conditions should be imposed for Navier-Stokes calculations using Grid (c).
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Table 1. Weak oblique shock solution for M1 = 2.000, turn angle of 10◦, and γ = 1.4.

Wave Angle, degrees M2 p2/p1 ρ2/ρ1 T2/T1 p02/p01

39.31 1.641 1.707 1.458 1.170 0.9846

8. Project Tasks: Perform the following sequence of test cases to facilitate code development, debugging,
and analysis of results:

• Case 1: Inviscid Euler, first-order accurate.

• Case 2: Inviscid Euler, second-order accurate (fully upwind) or
third-order accurate QUICK scheme without flux limiter.

• Case 3: Inviscid Euler, second-order accurate (fully upwind) or
third-order accurate QUICK scheme with basic minmod limiter.

Following the notation used in the Topic 25 class notes on pages 5 - 7, the spatial accuracy of the scheme
can be set using the generalized interpolation stencils for the left and right states of Q as follows: (1)
first-order accuracy is obtained by setting ϵ = 0, (2) second-order accuracy (fully upwind) is obtained by
setting ϵ = 1 and κ = −1, and (3) third-order accuracy using the QUICK scheme is obtained by setting
ϵ = 1 and κ = 1/2.3

9. Report: Results should be documented in a neatly formatted typeset report with the following sections:

Cover Page
1. Introduction (10 points)
2. Problem Formulation (20 points)
3. Results and Discussion (50 points)
4. Conclusions (10 points)

Appendix (10 points): Computer code listing.

The main report (Sections 1 – 4) should be no longer than 15 single-sided pages (single-space, 11pt or
12pt font, 1-inch margins, not including the Cover Page and the Appendix). It should include all tables
and figures discussed in your report and include at a minimum the following information:

(a) A concise description of the numerical scheme used and how it was implemented.

(b) Representative convergence plots for a subset of Cases 1 – 3 listed above (i.e., semi-log plots of the
L∞ or L2 norm of the residual versus iteration number).

(c) Results showing (for example) 2-D field plots of selected quantities of interest from the cases with
a discussion of the relative accuracy of the scheme’s numerical predictions compared to the verifi-
cation data given in Table 1.

(d) Analysis and discussion that compares and contrasts the observed differences between the cases
such as the effects of higher-order accuracy with/without limiters compared to first-order accuracy
and the impact of numerical dissipation.

(e) A concise set of conclusions that summarizes the observations and trends observed.

A listing of your code should be provided in the Appendix with a brief description of the computer
architecture and compiler used to run the code. The program should be clearly written, commented, and
be original work. Identical codes submitted by multiple students will not be accepted.

3The viscous diffusion fluxes for the 2-D operator in finite-volume form are summarized in the Topic 24 notes.
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There is no advantage to handing in a long report. Covering the material described above clearly
and concisely will yield maximum benefits. Given the page limits, you will need to present more than one
neatly formatted table, diagram, or plot, etc., per page. Labels should be clearly legible using no smaller
than a 10pt font size. Note the following:

• Each student needs to write their own code and include a printout of the code as an appendix to the report.
The code should be clearly commented and be original work. Plagiarizing or using a code written by
someone else will be considered a violation of the Georgia Tech Honor Code.

• If difficulties are encountered in achieving a working version of the code or accomplishing the requested
sequence of project tasks, the report should clearly outline the formulation, approach, progress made,
difficulties encountered, and strategies pursued to overcome these difficulties.

• Late reports cannot be accepted since final grades for the class are due on Monday, May 6, 2024.
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